Zeta functions of regular arithmetic schemes at s=0

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artin-mazur Zeta Functions in Arithmetic Dynamics

This is a special case of an Artin-Mazur zeta function, which is defined for certain dynamical systems (and in general counts the number of isolated fixed points). Note that we are, as usual, not counting fixed points with multiplicity, which in this case would be something like the Lefschetz index. In fact, if we did count with multiplicity and deg f = d, then |Pern(f)| = d + 1 for all n, and ...

متن کامل

Schemes over F1 and Zeta Functions

We develop a theory of schemes over the field of characteristic one which reconciles the previous attempts by Soulé and by Deitmar. Our construction fits with the geometry of monoids of Kato and is no longer limited to toric varieties. We compute the zeta function of an arbitrary Noetherian scheme (over the field of characteristic one) and prove that the torsion in the local geometric structure...

متن کامل

Schemes over F1 and Zeta Functions

We determine the real counting function N(q) (q ∈ [1,∞)) for the hypothetical “curve” C = Spec Z over F1, whose corresponding zeta function is the complete Riemann zeta function. We show that such counting function exists as a distribution, is positive on (1,∞) and takes the value −∞ at q = 1 as expected from the infinite genus of C. Then, we develop a theory of functorial F1-schemes which reco...

متن کامل

Arithmetic expressions of Selberg’s zeta functions for congruence subgroups

Abstract In [Sa], it was proved that the Selberg zeta function for SL2(Z) is expressed in terms of the fundamental units and the class numbers of the primitive indefinite binary quadratic forms. The aim of this paper is to obtain similar arithmetic expressions of the logarithmic derivatives of the Selberg zeta functions for congruence subgroups of SL2(Z). As applications, we study the Brun-Titc...

متن کامل

Local zeta functions and the arithmetic of moduli spaces

Hiroki Aoki On the structure theorem for modular forms ... Igusa’s result and beyond In this talk we treat the structure theorem of the graded ring of modular forms of several variables. Determining the structure is not easy in general. The first result was given by Professor Jun-Ichi Igusa in 1962. This was on the graded ring of Siegel modular forms of degree 2 of even weights. And then in 196...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 2014

ISSN: 0012-7094

DOI: 10.1215/00127094-2681387